STUDENTDISCOUNTS.COM EXCLUSIVE: Includes FREE SPSS Library. A great resource for learning how to use SPSS.
If you need to order a backup disk in addition to your download:
-
If you would like 5 year Software Replacement Assurance $9.99.
For academic use only. Teachers, schools, and students must provide proof of eligibility.
You may install the software on up to two (2) computers. License is good for 2 years.
Runs on Windows and Mac OS 10.8 (Mountain Lion) computers. For MacOS 10.10 (Yosemite), see notes below.
Includes:
- IBM SPSS Base 22
- No limitation on the number of variables or cases
- System requirements are at the bottom of this product description
What’s New in IBM SPSS Base 22
-
Deploy SPSS Statistics output on multiple smart devices (mobile phones and tablets) simultaneously. Please note that the SPSS program requires a desktop or laptop for running of the program itself.
- Improve model accuracy with enhanced Monte Carlo simulation, which includes new features such as heat maps, automatic linear modeling and simulating strings.
-
Obtain more accurate results faster, and increase productivity and effectiveness.
- Monte Carlo simulation – Use Monte Carlo simulation techniques to build better models and assess risk when inputs are uncertain.
- Import IBM Cognos Business Intelligence data – Easily import IBM Cognos Business Intelligence data into SPSS Statistics to enhance your analysis. Read custom data with or without filters and import pre-defined IBM Cognos reports.
- Program using a Java plug-in – Call SPSS Statistics functionality from a Java application and have SPSS Statistics output appear in the Java application. You can also use Java to control, react to and embed program logic into your SPSS Statistics jobs.
With IBM SPSS Statistics Base you can be confident in your analytic results. This comprehensive software solution includes a wide range of procedures and tests to solve your research challenges.
IBM SPSS Base 22 Overview, Features and Benefits
Descriptive Statistics
- Crosstabulations – Counts, percentages, residuals, marginals, tests of independence, test of linear association, measure of linear association, ordinal data measures, nominal by interval measures, measure of agreement, relative risk estimates for case control and cohort studies.
- Frequencies – Counts, percentages, valid and cumulative percentages; central tendency, dispersion, distribution and percentile values.
- Descriptives – Central tendency, dispersion, distribution and Z scores.
- Descriptive ratio statistics – Coefficient of dispersion, coefficient of variation, price-related differential and average absolute deviance.
- Compare means – Choose whether to use harmonic or geometric means; test linearity; compare via independent sample statistics, paired sample statistics or one-sample t test.
- ANOVA and ANCOVA – Conduct contrast, range and post hoc tests; analyze fixed-effects and random-effects measures; group descriptive statistics; choose your model based on four types of the sum-of-squares procedure; perform lack-of-fit tests; choose balanced or unbalanced design; and analyze covariance with up to 10 methods.
- Correlation – Test for bivariate or partial correlation, or for distances indicating similarity or dissimilarity between measures.
- Nonparametric tests – Chi-square, Binomial, Runs, one-sample, two independent samples, k-independent samples, two related samples, k-related samples.
- Explore – Confidence intervals for means; M-estimators; identification of outliers; plotting of findings.
Tests to Predict Numerical Outcomes and Identify Groups:
IBM SPSS Statistics Base contains procedures for the projects you are working on now and any new ones to come. You can be confident that you’ll always have the analytic tools you need to get the job done quickly and effectively.
- Factor Analysis – Used to identify the underlying variables, or factors, that explain the pattern of correlations within a set of observed variables. In IBM SPSS Statistics Base, the factor analysis procedure provides a high degree of flexibility, offering:
- Seven methods of factor extraction
- Five methods of rotation, including direct oblimin and promax for nonorthogonal rotations
- Three methods of computing factor scores. Also, scores can be saved as variables for further analysis
- K-means Cluster Analysis – Used to identify relatively homogeneous groups of cases based on selected characteristics, using an algorithm that can handle large numbers of cases but which requires you to specify the number of clusters. Select one of two methods for classifying cases, either updating cluster centers iteratively or classifying only.
- Hierarchical Cluster Analysis – Used to identify relatively homogeneous groups of cases (or variables) based on selected characteristics, using an algorithm that starts with each case in a separate cluster and combines clusters until only one is left. Analyze raw variables or choose from a variety of standardizing transformations. Distance or similarity measures are generated by the Proximities procedure. Statistics are displayed at each stage to help you select the best solution.
- TwoStep Cluster Analysis – Group observations into clusters based on nearness criterion, with either categorical or continuous level data; specify the number of clusters or let the number be chosen automatically.
- Discriminant – Offers a choice of variable selection methods, statistics at each step and in a final summary; output is displayed at each step and/or in final form.
- Linear Regression – Choose from six methods: backwards elimination, forced entry, forced removal, forward entry, forward stepwise selection and R2 change/test of significance; produces numerous descriptive and equation statistics.
- Ordinal regression—PLUM – Choose from seven options to control the iterative algorithm used for estimation, to specify numerical tolerance for checking singularity, and to customize output; five link functions can be used to specify the model.
- Nearest Neighbor analysis – Use for prediction (with a specified outcome) or for classification (with no outcome specified); specify the distance metric used to measure the similarity of cases; and control whether missing values or categorical variables are treated as valid values.
System Requirements:
License Term: 2 years
Windows:
Operating system: Microsoft Windows XP (Professional, 32-bit) or Vista® (32-bit or 64-bit), Windows 7 (32 or 64-bit) or Windows 8 Desktops/laptops only.
Hardware:
Intel® or AMD x86 processor running at 1GHz or higher
Memory: 1GB RAM or more recommended
Minimum free drive space: 800MB***
Mac:
Operating system: Please read: * 10.8 (Mountain Lion) or 10.9. For 10.10, please see below It cannot be used with 10.7 or lower
Hardware:
- Intel processor (32 and 64 bit)
- Memory: 1GB RAM or more recommended
- Minimum free drive space: 800MB***
- *** Installing Help in all languages requires 1.1-2.3 GB free drive